 Partner with ConvertIt.com New Online Book! Handbook of Mathematical Functions (AMS55) Conversion & Calculation Home >> Reference Information Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (AMS55) Purchase the electronic edition of this book in Adobe PDF format! FIRST | PREVIOUS | NEXT | LAST | CONTENTS | PAGE | ABOUT | SMALL | MEDIUM | LARGE Below is the OCR-scanned text from this page: a modular angle (elliptic function) - - _ - _ _ - - - - - - P4 a' . yz=--3 coefficient of excess _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ r(z) gamma function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ r(a, z) incomplete gamma function _ _ _ _ _ _ _ _ _ _ _ _ _ 6 j , Kronecker delta '(=O if i # k ; =1 if i = k ) _ - _ - - 6:(fn) central difference- - - - _ _ - _ _ _ _ _ _ - _ _ _ _ _ _ __ _ A difference operator _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A discriminant of Weierstrass' canonical form--- A(f,) forward difference _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ Az absolute error __.__________________________ {(x) Riemann zeta function _ _ _ _ _ _ _ _ _ _ _ _ _ - - - _ _ _ r ( z ) Weierstrass zeta function _ _ _ _ _ - _ _ _ _ _ - _ _ _ _ _ - Z(ulm) Jacobi's zeta function-_ - - - _ _ _ _ - - - - _ _ _ _ - k = l qo =S(W.) H ( u ) , H,(u) Sn(z) 8,(e\a) , 8 d ( e \ a ) , Sn(e\a),8,(e\a) theta functions Weierstrass elliptic function- - - - - - - - Jacobi's eta function _ _ _ _ __ _- - - - _- - theta function- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ Neville's notation - - - - - - - - - - - - - for Page 590 228 228 807 ,263 258 255 260 928 928 255 260 822 877 822 629 877 14 807 629 578 807 63 1 577 576 578 Notation - Greek Letters Miscellaneous Notations (n; n,, nl; . . ., n,) mu!tinomial coefficient _ _ _ _ _ _ [z] largest integer 2 s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1046 Page 19 19 752 877 883 70 10 255 258 822 437 823 66 @(u/m) Jacobi's theta function _ _ _ _ _ _ _ _ _ _ _ - _ _ - _ _ IK, nth c u ~ u l a n t - - - - - - - - - - - - _ _ - - _ - - - - , - _ - - - - - ~22 joining factor for spheroidal w3ve functions-- ~ ( z ) number of primes nearest integer to z . . . . . . . . . . . . . . . . . . . . . f complex conjugate of z (=z-iy) _ _ _ _ _ _ _ _ _ _ _ _ _ z = z f i y complex number (Cartesian form)------ =re** (polar form) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ IzI absolute value or modulus of z _ _ _ _ _ _ _ _ _ _ _ _ _ _ z overall summation _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2' restricted summation _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ z II sum or groduct taken over all prime numbers p - z n sum or product overall positive divisors d of n-- f Cauchy's principal value of the integral- - - - __ = approximately equal _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - asymptotically equal-- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ <, >, _< 2 inequality, inclusion , _ _ _ _ _ _ _ _ _ _ _ _ _ _ # unequal__--_------______-_-_-----_---_^ P V 61" d!s page 577 928 757 807 753 595 877 826 928 928 231 878 590 255 936 878 509 298 928 629 827 934 569 826 928 504 258 504 62 9 510 Page 222 16 16 16 16 a22 755 807 826 228 14 15 10 12 irU.S. GXEFWEW PRILUTING OFFIfX: 1999-450-358 The page scan image above, and the text in the text box above, are contributions of the National Institute of Standards and Technology that are not subject to copyright in the United States.